Intravesical delivery of small activating RNA formulated into lipid nanoparticles inhibits orthotopic bladder tumor growth.
نویسندگان
چکیده
Practical methods for enhancing protein production in vivo remain a challenge. RNA activation (RNAa) is emerging as one potential solution by using double-stranded RNA (dsRNA) to increase endogenous gene expression. This approach, although related to RNA interference (RNAi), facilitates a response opposite to gene silencing. Duplex dsP21-322 and its chemically modified variants are examples of RNAa-based drugs that inhibit cancer cell growth by inducing expression of tumor suppressor p21(WAF1/CIP1) (p21). In this study, we investigate the therapeutic potential of dsP21-322 in an orthotopic model of bladder cancer by formulating a 2'-fluoro-modified derivative (dsP21-322-2'F) into lipid nanoparticles (LNP) for intravesical delivery. LNP composition is based upon clinically relevant formulations used in RNAi-based therapies consisting of PEG-stabilized unilamellar liposomes built with lipid DLin-KC2-DMA. We confirm p21 induction, cell-cycle arrest, and apoptosis in vitro following treatment with LNP-formulated dsP21-322-2'F (LNP-dsP21-322-2'F) or one of its nonformulated variants. Both 2'-fluoro modification and LNP formulation also improve duplex stability in urine. Intravesical delivery of LNP-dsP21-322-2'F into mouse bladder results in urothelium uptake and extends survival of mice with established orthotopic human bladder cancer. LNP-dsP21-322-2'F treatment also facilitates p21 activation in vivo leading to regression/disappearance of tumors in 40% of the treated mice. Our results provide preclinical proof-of-concept for a novel method to treat bladder cancer by intravesical administration of LNP-formulated RNA duplexes.
منابع مشابه
Drug delivery system based on dendritic nanoparticles for enhancement of intravesical instillation
Intravesical instillation of antitumor agents following transurethral resection of bladder tumors is the standard strategy for the treatment of superficial bladder cancers. However, the efficacy of current intravesical instillation is limited partly due to the poor permeability of the urothelium. We therefore aimed to develop a high-penetrating, target-releasing drug delivery system to improve ...
متن کاملEfficient intravesical therapy of bladder cancer with cationic doxorubicin nanoassemblies
Nanoparticles have promising applications in drug delivery for cancer therapy. Herein, we prepared cationic 1,2-dioleoyl-3-trimethylammonium propane/methoxypoly (ethyleneglycol) (DPP) nanoparticles to deliver doxorubicin (Dox) for intravesical therapy of bladder cancer. The DPP micelles have a mean dynamic diameter of 18.65 nm and a mean zeta potential of +19.6 mV. The DPP micelles could prolon...
متن کاملTargeted induction of endogenous NKX3-1 by small activating RNA inhibits prostate tumor growth.
BACKGROUND RNA activation (RNAa) is a small RNA-mediated gene regulation mechanism by which expression of a particular gene can be induced by targeting its promoter using small double-stranded RNA also known as small activating RNA (saRNA). We used saRNA as a molecular tool to examine NKX3-1's role as a tumor suppressor and tested in vitro and in vivo antitumor effects of NKX3-1 induction by sa...
متن کاملIntravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer.
The mainstay in the management of invasive bladder cancer continues to be radical cystectomy. With regard to improvement of quality of life, however, therapies that preserve the bladder are desirable. We investigated the use of intravesical PLK-1 small interfering RNA (siRNA) against bladder cancer. Patients with bladder cancers expressing high levels of PLK-1 have a poor prognosis compared wit...
متن کاملNonviral cytokine gene therapy on an orthotopic bladder cancer model.
PURPOSE The purpose is to assess cytokine gene transfection in tumor cells and its therapeutic efficacy in an orthotopic mouse bladder cancer model after liposome-mediated gene transfer. EXPERIMENTAL DESIGN A total of 1 x 10(5) MB49 cells was instilled into the bladder of C57BL/6 mice after electrocautery to establish the tumor model. The plasmids were constructed by inserting the coding sequ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 72 19 شماره
صفحات -
تاریخ انتشار 2012